

 Siri As a Personalized Food Recommender

Anh Dao
Computer Science Department

Worcester Polytechnic Institute

Abstract—Siri the first invented Intelligent Personal

Assistants by Apple. However, the use of Siri is not high. Part of

it is due to the limitation of its ability to understand users. In this

research, we are applying three supervised learning classifiers:

Support Vector Machine (SVM), Random Forest and Naive

Bayes (NB) to turn Siri into a learning agent so that it could make

personalized food recommendations. While RF has the best

performance and NB has the worst after our testing, there were

various errors in our models and limitations we faced that allows

future improvements on this project.

Keywords—Siri, Support Vector Machine, Random Forest,

Naive Bayes

I. INTRODUCTION

Virtual Assistants (VAs) or Intelligent Personal Assistants

(IPAs) are software agents that help user perform tasks or

services [1]. Siri was the first modern IPA created and

implemented on smartphones in 2011 by Apple. Siri helps

users to complete some basic tasks like calling someone or

setting alarms just by talking to it. The invention of Siri took

other tech companies years to catch up [2]. Amazon’s Alexa

was released in 2014 and Google Assistant was released in

2016 [2]. However, the creation of other IPAs has made Siri

lose the race since the later IPAs have a wider range of

features [2]. According to the article, Apple has not improved

significantly.

Statistically, 98% of iPhone users have tried Siri but 70%

of them sometimes or rarely use it [19]. Another report also

claims that the number of Siri users dropped by half, from

21% to 11%, in 2017 after the growth of Alexa and Google

Assistant [20]. After doing research, we realized that the AI

implemented Siri is limited to speech recognition. What Siri

does is listening to the voice, converting speech to computer

language, data searching and responding [4]. According to [5],

the interaction with Siri isn’t actual conversations, “but the

interactions are normally single-turn inputs which are dealt

with independently.” There is no back and forth conversation.

Siri does not a learning agent. We want to fully develop Siri so

that it can become a learning agent: learning from experience.

In this project, we want Siri to be able to access the search

history from the phone browser, or Safari, and see what sort of

food or entertainment users like in order to make future

recommendations based on user’s preference especially when

user travels to another area. Since this is a broad approach, we

are narrowing it down to focus on food recommendation based

on user’s interest.

 The main challenge of this project is that there is no

Safari browsing dataset and there was not any similar work

done on Siri. To alleviate this, we used a restaurant data with

consumer rating, where rating is the iPhone user’s interest

level based on different restaurant characteristics.

 As Siri can make personalized recommendations, the

use of Siri will be improved because users won’t have to go on

Yelp or TripAdvisor to find restaurants when they travel and

read the comments on the food/service to see if it’s what they

are looking for. And since all iPhone users have access to Siri,

it will be more convenient to use instead of spending extra on

Alexa or Google Assistant.

II. BACKGROUND

 Siri uses Natural Language Processing to translate

spoken language into text that machines can understand [6].

You might ask “Do I need an umbrella today?” and Siri can

understand that you’re asking for a prediction of rain [6]. Siri

can do it because of the algorithm. It takes in the questions and

searches for keywords.

A. Related Works

Even though there is not a significant amount of work done

on improving any other aspect of Siri besides speech

recognition, there is various work done on predicting human

behavior.

SVM method is used in various research to make

recommendations based on user preferences. [8] uses SVM to

predict movie rating based on movie content and user

interests. The model is created based on user’s rating, movie

information, user’s demographic. The research proved that

SVM is the best machine learning approach among others

such as Linear Classifier, Bayesian learning because the

solution identified with SVM is optimized and has a strong

generalization ability [9]. One of the advantages of SVM is its

accuracy [10] but the choice of parameters impacts on its

prediction accuracy [9]. In addition, SVM doesn’t suit large

dataset since the training time will be high [10].

Random Forest [RF] is also found used in making

recommendations based on user’s preferences. The study in

[12] uses RF to make music recommendations based on user’s

preferences. The program prompts the user with a minimum of

10 songs and has he/she rate the songs then used the rated data

for training. Random Forests is a combination of many

decision trees which increases accuracy from multiple

suggestions (each suggestion is a tree). RF for said to be better

in classification problems than SVM with the dismissal of

having to tune parameters; RF is faster and scalable [13].

However, the trade-off for RF is its difficulty on interpretation

for human [13].

Naive Bayes (NB) classifier is said to perform well with

multiclass classification and it’s often used to text

classification and recommendation system [20]. A study has

done by Koji Miyahara† and Michael J. Pazzani in UC Irvine

using NB algorithm for books, CDs, … recommendations

using NB algorithm [18]. The study uses user preferences as

features to determine if the book will be liked or disliked. NB

it’s used for its simplicity. It requires less training which

results in a faster process. However, the strong assumption of

feature independence is one of its disadvantages. In addition,

if a class label has no occurrence, the probability will be zero.

This problem is mitigated by Laplace smoothing (explained in

the Method section).

In this Project, we will develop Siri into a learning agent.

Based on our understanding, we will program all of the above

algorithms and compare and contrast the performances with

three performance metrics.

B. Paper Organization

We structure the paper in the following order. Section I

introduces the problem, its challenges, and benefits of the

study. Section II addresses different state-of-art methods that

were done in previous similar work and their advantages as

well as disadvantages. Section III we describe in details how

we will use the algorithms to run the data and the metrics we

use to evaluate the algorithm. Section VI displays the results

and analysis of the performance of each method. And finally,

we will conclude our work on section V.

III. METHODS

In this section, we will discuss step by step how our team

approached this problem. Our goal is to identify the best state-

of-art method to train Siri on predicting user’s interest in

restaurants based on different restaurant characteristics and

user’s preferences, and what features would be likely to

impact user’s interest. To achieve this goal, we divided our

process into three steps (displayed in Figure 1).

Our first step is processing data. We merged, cleaned and

sectioned our data based on their importance ranking. To find

out the ranks, we ran a built-in function from sklearn. Then we

structured four variations of our dataset with more important

or less important features.

Our second step is training the sets with three supervised

learning algorithms: Support Vector Machine, Random Forest,

and Naive Bayes. We applied cross-validation on training

data. 80% of our data is alternately trained for ten iterations.

Our final step is evaluating the performance of the three

methods. We ran 20% of our data on training models for

testing. Then we compared their f1 scores and their learning

curves for evaluations.

Figure 1. Computational Pipeline of our Methodology.

First we merged and cleaned our data. Then we sectioned it

into four variations. We tested and trained our models with

SVM, RF, and NB models. Finally we evaluated the results

with f1 score and learning curve.

A. Datasets

The dataset we used in this research is the Restaurant Data

with Consumer Ratings from Kaggle [14]. This data consists

of nine files :

Restaurants

1 chefmozaccepts.csv

2 chefmozcuisine.csv

3 chefmozhours4.csv

4 chefmozparking.csv

5 geoplaces2.csv

Customers:

6 usercuisine.csv

7 userpayment.csv

8 userprofile.csv

User-Item-Rating:

9 rating_final.csv

The dataset has over 2300 restaurants and over 130 user

profiles. We merged the data among files by using foreign

keys which are restaurant ID and customer ID, hot-coded

nominal data into binary and cleaned up NaN values. After

finishing the merging and cleaning data, our final dataset has

10,000 points. The reason for the expansion from 2000

restaurants and 130 users is due to the multiple ratings from a

single user.

B. Sectioning Data

Since we have 27 features, we want to section our main

dataset into 3 sets with more and less important features

added. To determine the impact of features on our prediction

model, we will run ExtraTreesClassifier built-in function from

sklearn library to sort out six least important features and six

most important features to see how they impact the prediction

of our models. In this study, we will test in total four

variations of our dataset:

Variation 1: dataset without 6 most and 6 least important

features

Variation 2: dataset 1 with 6 most important features

added

Variation 3: dataset 1 with 6 least important features

added

Variation 4: original dataset with full features

C. Support Vector Machine

Support Vector Machine (SVM) is a supervised learning

algorithm and the first algorithm we use to determine user’s

level of interest on different restaurant features. SVM uses a

hyperplane to classify data into two classes. The more features

we have, the more dimensions added to the problem. This

technique is called “kernelling”, mapping data to a higher

dimension.

Figure 2. Hyperplane in Two-dimensional and Three-

dimensional View. This figure is adapted from [10]

In addition, SVM is inherently a two-class classifier, we

have three classes. The most common techniques are one-

versus-rest (ovr) classifier and one-versus-one (ovo) classifier.

In this study, we are using SVC function from scikit learn

library of Python. This function supports two-class classifiers

and multiclass classifier and mitigates the problem with

kernelling.

There are a few parameters in SVC functions to notice: C,

gamma and kernel. C is how much we want to penalize

misclassified data points. Lower C means simple and soft

margin but underfitting; higher C means less mistake but

overfitting. Gamma is model complexity. Lower gamma

means less complexity and higher gamma means more

complexity (the higher gamma, the more likely the model will

classify data point). There are three kernel types: Linear, RBF,

Poly. We used Linear kernel for simplicity, set C = 0.1,

gamma = auto and ‘ovo’ classier in SVC built-in function in

sklearn.

D. Random Forest

Random Forest (RF) is the second supervised learning

classifier we use to test the data. RF algorithm builds multiple

Decision Trees and merges them together for a more accurate

prediction [17]. RF is an easy method without tuning

parameters. RF allows you to measure the importance level of

each feature and drop the least important one since the higher

number of features will likely lead to overfitting.

Figure 3. Random Forest Scheme. This figure is

adapted from [21].

In this process, we use sklearn built-in Random Forest

function. Some critical parameters of the functions for

accuracy are n_estimators parameter - the number of trees the

algorithm will build, max_features - maximum features in one

tree. As mentioned, the higher the number of trees, the better

the model performances, however, the slower the computation.

We set n_estimators to 250 trees and default max_features

which is the square root of the data features.

E. Naive Bayes

Naive Bayes is the final supervised learning classifier that

we used to run the data with. Naive Bayes classifier is a family

of probabilistic classifier, based on Bayes theorem. Naive

Bayes assumes that features are independent from one another.

𝑃(𝑦 | 𝑥1, . . . , 𝑥𝑛) =
𝑃(𝑦) 𝑃(𝑥1, . . , 𝑥𝑛 | 𝑦)

𝑃(𝑥1, . . . , 𝑥𝑛)

with n is the number of features. NB technique uses

probability to classify data based on the given probability of

an occurred event.

 In this study, we used MultinomialNB function from

sklearn. MultinomialNB is suitable for discrete data (non-

continuous data), which is our data. NB classifier has a feature

called Laplace smoothing where it increases the zero

probability to the small positive value to avoid discarding

features (that is supposed to have zero probability) in our data.

Therefore, in our MultinomialNB function, we set alpha

(Laplace smoothing) parameter to be 1.0

F. Evaluation

To evaluate the performance of the algorithms we apply

three methods

a) Cross-Validation for F1 Score

When it comes to measuring how accurate our model do,

there are plenty of scoring methods, i.e. Accuracy, Precision,

Recall, F1. We want to avoid Accuracy due to the large

contribution of a class on True Positive. Our data does not

have a balanced number between classes.

Precision is the probability of true Positive out of the total

predicted Positive (true and false).

Recall captures the probability of true Positive out of our

predicted values.

 F1 is used to seek a balance between Precision and

Recall. Therefore, we decided to use F1 score measurement.

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Instead of regularly splitting the data into 80-20 for

training and test and running the data once, we use Cross-

validation for the performance measurement. Cross-Validation

will run the data in X iterations (in this case we chose 10

iterations) in which each iteration has a different set of training

and testing data.

Figure 4. Cross Validation Scheme. This figure is adapted

from User:Joan.domenech91 originally released under CC

BY-SA 3.0

b) Learning Curve

The learning curve is used to compare the performance of

training and testing data over various numbers of training

instances. It gives the data of how well our model can

generalize to new data [16]. The purpose of the learning curve

is to minimize bias and variance and find the right number of

features for a corresponding model. Often, model with more

data does better.

Figure 5. Sample Learning Curve Graphs. Example is taken

from our results

The learning curve also tells us when the model has

learned as much as it can about the data. This occurs when:

1) The performance on training and testing sets stay

stable

2) The gap between error rate stays consistent despite

the increasing number of training instances

There are three types of learning curves:

1) High variance: When training and testing errors

converge and are high (Figure 6)

2) High bias: When there is a large gap between the

errors (Figure 6)

3) Ideal learning curve: Testing and training learning

curves converge at similar values and a smaller gap

between errors

Figure 6. High Variance Learning Curve (upper figure)

and High Bias Learning Curve (lower figure) Example.

This figure is adapted from [15]

IV. RESULTS

In this section, we showcase three performance metrics:

feature importance, f1 score and learning curve. We first

calculated the importance of each feature from sklearn. Then

we computed f1 score with cross-validation for three

algorithms. Finally, we plotted the learning curve over

different number of instances of three methods.

A. Feature Importance

We ran ExtraTreesClassifier function in sklearn to check

the importance of each feature (Top 10 and Bottom 10 features

are displayed in Table 1 and Table 2).

From the observed results, we chose the top six most

important features are: customer’s Color, Personality, Interest,

Transportation, Budget, and Ambiance; bottom six least

important features are: customer’s Cuisine, Religion, Activity,

restaurant’s Hours, Days, and Name.

The results were surprising to us since we predicted that

customer’s features like (favorite) Color or Personality would

not affect their liking for the restaurants, but the results

showed that those features have the highest correlation. The

least importance feature is the cuisine type that the customer

likes - 0.0. What user’s favorite cuisine is does not seem to

affect their liking on the restaurants. The second least

importance feature is the restaurant hours.

Table 1. Top 10 Features. The feature importance is

computed by ExtraTreeClassifier built-in function from

sklearn. The features are ranked for the partition of the dataset.

Ranking Feature Importance

1 Ccolor=purple 0.054304

2 Cpersonality=hunter-

ostentatious

0.052972

3 Cinterest=variety 0.050607

4 Ctransport=on foot 0.044125

5 Cbudget=low 0.039327

6 Cambience=family 0.033144

7 Cbudget=medium 0.030156

8 Cdrink_level=casual

drinker'

0.029640

9 Cdress_preference=inform

al

0.028742

10 Cpersonality=thrifty- 0.028575

protector

Table 2. Bottom 10 Features. The feature importance is

computed by ExtraTreeClassifier built-in function from

sklearn. The features are ranked for the partition of the dataset.

Ranking Feature Importance

276 Ccuisine=Tunisian 0.000000

275 Ccuisine=Organic-Healthy 0.000000

274 Ccuisine=Russian-

Ukrainian

0.000000

273 Ccuisine=Southwestern 0.000000

272 Ccuisine=Indonesian 0.000000

271 Ccuisine=Hungarian 0.000000

270 Ccuisine=French 0.000000

269 Ccuisine=Armenian 0.000000

268 Ccuisine=Dutch-Belgian 0.000000

267 Ccuisine=Brazilian 0.000000

Figure 7. Importance of Features. The feature importance is

computed by ExtraTreeClassifier built-in function from

sklearn. The total importance percentages sums up to 1.0. The

features are ranked for the partition of the dataset.

B. F1 Score

In this section, we display the results of the mean and

standard deviation (SD) of f1 score for three models.

Our data is divided into 80-20, 80% of the data is for

training and 20% is for testing. We used Cross-validation

(CV) model to run our data for ten iterations. In each iteration,

a different 80% of the data is trained and a different 20% is

tested. F1 score is computed after every iteration and averaged

out of ten iterations. SD is a measurement of uncertainty. It

shows how far away data spreads out from the average. the

higher the SD, the worse the model is doing since our f1 score

since f1 varies heavily.

Table 3. Mean and Standard Deviation of F1 of SVM, RF,

NB models. We computed Mean and Standard Deviation of

our models across different variations of our dataset. Each

variation contains different set of features based on their

importance ranking.

 SVM RF NB

Variation 1

(Least features)
0.549482
(0.0788)

0.592319
(0.0945)

0.561224
(0.1259)

Variation 2

(More

important

features added)

0.623701

(0.0913)

0.677312

(0.0965)

0.656376

(0.1082)

Variation 3

(Less important

features added)

0.540402

(0.1119)

0.632346

(0.1077)

0.562260

(0.1121)

Variation 4 (Full

features)
0.624878

(0.1112)

0.704369

(0.0851)

0.675336

(0.0939)

From Table 3, we can notice that our average f1 scores are

low across our models (mostly below 0.7) and its SD is overly

high.

Among three models, RF model results in the highest f1

score and SVM results in the lowest f1 score throughout

different variations of our dataset.

Our goal was also testing on the effect of different

features on our model. As the result, adding more important

features increases by f1 by 10%. However, adding less

important features does not improve the performance.

Figure 8. Boxplots of F1 Score of SVM, RF, NB Models.

The uppermost boxplot represents dataset with the fewest

features. The second boxplot figure has more important

features added. The third boxplot figure has less important

figures added. The lowermost boxplot figure represents data

with full features.

C. Learning Curve

In this section, we present the learning curves of different

models with different training instances. Similar to f1 process

in section B, we also used cross-validation (CV) with 80-20

data and f1 score to compute the learning curve. The only

difference is that in this process, the function uses different set

of training samples. Training data is incremented by 1000.

Since we split our data 80-20 for training and testing, the

training instances contain the maximum of 8,000 samples (out

of 10,000 samples). Our CV score represents the testing f1

score.

Some common characteristics of all the resulted learning

curves:

1. Adding features that have great importance rank

significantly increases the performance

2. Adding features that have low important rank does

not make a difference but creates higher variance on

our models. This is shown by a bigger gap between

training score and cv score curve; the bigger the gap,

the higher the variance.

Out of three models, RF yields the highest score and NB has

the lowest performance. We will go into a detailed analysis of

each model and explain why having a maximum score is not a

good result.

1) Support Vector Machine (SVM)

A general performance of the learning curves on four

variations is the decrease of the training score line (red line) as

the training examples increase. This means that our model

does not have a great ability to generalize with new data. This

indicates a high bias (underfitting) in our SVM model. A way

to increase the performance of the underfitting model is not

adding more data points but adding more features.

As we added more features, out f1 score increases by

10%. However, that does not eliminate high bias out of our

model. We also noticed that as we added more irrelevant data,

the training curve and CV curve don’t converge anymore,

which imply a higher variance in our model.

Figure 9. Learning Curves of Support Vector Machine

Model. We performed CV with f1 score for SVM model with

incrementing set training examples by 1000. The uppermost

curves represent dataset with the fewest features. The second

curves have more important features added. The third curves

have less important figures added. The lowermost curves

represent data with full features.

2) Random Forest (RF)

A general performance of our RF model is the maximum

of the training score regardless of training examples.

Maximum score means absolutely no error. However we know

it is not true in this case. Thus, this represents a high variance

(overfitting) in our RF model. High variance is caused by

complexed model. A solution is to reduce the model

complexity or add more data points.

It’s evident in this case that adding more features will not

help the performance. Therefore, it is easy to see there is no

difference between the f1 score of the first figure (fewest

features) and f1 score of the last figure (most features).

We also noticed when we added features that are less

important in our model, the gap between training score and

cross-validation score increased. As we mentioned above, the

bigger the gap, the greater the variance. Adding irrelevant

features worsened our model.

Figure 10. Learning Curves of Random Forest Model. We

performed CV with f1 score for RF model with incrementing

set training examples by 1000. The uppermost curves

represent dataset with the fewest features. The second curves

have more important features added. The third curves have

less important figures added. The lowermost curves represent

data with full features.

3) Naive Bayes (NB)

In this NB model, our f1 scores are the lowest compared

to those of SVM and of FR. To mitigate the problem, we

added more features. Similar to SVM and RF models, f1 score

increased when we added more important features to the

model (second figure), but when we added less important

features (third, fourth figure), the gap between training score

and CV score expanded. F1 score in the third figure is not as

high as f1 score of the second figure.

On the good side, our NB model does not show severe

underfitting or overfitting problem. The gap between training

score and CV score is minimal. In the first two figures, the

majority of the red line and green line are overlapping. This

show there is no difference between our predicted results and

the actual results.

Figure 11. Learning Curves of Naive Bayes model. We

performed CV with f1 score for NB model with incrementing

set training examples by 1000. The uppermost curves

represent dataset with the fewest features. The second curves

have more important features added. The third curves have

less important figures added. The lowermost curves represent

data with full features.

V. CONCLUSION

In this paper, we tested three supervised learning

algorithms for recommendation system for Siri: Support

Vector Machine (SVM), Random Forest (RF) and Naive

Bayes (NB). Although the results showed that RF has the best

performance with the highest f1 score, the learning curve

result proved that the model is high variance. NB models

resulted in the lowest f1 scores throughout the tests.

In this approach, we were able to compare and contrast

different machine learning algorithms to see which one

performs the best for our type of data. In addition, our

approach let us train not only one specific portion of our data

but multiple random sections for higher accuracy. We were

able to identify what features are likely to have a major impact

on user’s rating. The higher ranked features are all user’s

personal characteristics and the lower ranked features are

restaurant’s features. And we also came to the conclusion that

adding more features does not fix overfitting problem, only

adding the “right” features do.

Nevertheless, we believe we could have improved our

evaluation method by using of accuracy score and AUC (Area

under the ROC Curve) besides f1 score. We want to manually

select the values for the parameters our models rather than

setting them as “auto” like right now, i.e gamma and C

parameter in SVM model. A limitation we faced was the

number of data points in our dataset. For future work, we want

to develop a reinforcement learning algorithm and gather more

data, especially browsing data, to train Siri.

VI. REFERENCES

[1] “Virtual assistant,” Wikipedia, 02-Dec-2018. [Online]. Available:

https://en.wikipedia.org/wiki/Virtual_assistant.

[2] T. Simonite, “'Siri, Why Have You Fallen Behind Other Digital

Assistants?',” Wired, 06-Oct-2017. [Online]. Available:

https://www.wired.com/story/siri-why-have-you-fallen-behind-other-

digital-assistants/.

[3] S. Krishna, “Amazon is reportedly designing AI chips to improve

Alexa,” Engadget, 12-Feb-2018. [Online]. Available:

https://www.engadget.com/2018/02/12/amazon-ai-chip-alexa-report/.

[4] https://www.quora.com/Is-Siri-an-example-of-artificial-intelligence

[5] G. Campagna and R. Ramesh, “Deep Almond: A Deep Learning-based

Virtual Assistant,” rep.

[6] NBC. News, YouTube, 28-Jun-2017. [Online]. Available:

https://www.youtube.com/watch?v=uE_WJTnqUwA.

[7] Z. Yang and X. Su, “Customer Behavior Clustering Using SVM,”

Physics Procedia, vol. 33, pp. 1489–1496, 2012.

[8] RSNA Pneumonia Detection Challenge | Kaggle. [Online]. Available:

https://www.kaggle.com/osbornep/reinforcement-learning-for-meal-

planning-in-python/notebook.

[9] X. Wang, F. Luo, Y. Qian, and G. Ranzi, “A Personalized Electronic

Movie Recommendation System Based on Support Vector Machine and

Improved Particle Swarm Optimization,” Plos One, vol. 11, no. 11,

2016.

[10] “KDnuggets,” KDnuggets Analytics Big Data Data Mining and Data

Science. [Online]. Available:

https://www.kdnuggets.com/2016/07/support-vector-machines-simple-

explanation.html.

[11] A. Bahnsen, “Machine Learning Algorithms: Introduction to Random

Forests,” DATAVERSITY, 05-Dec-2017. [Online]. Available:

http://www.dataversity.net/machine-learning-algorithms-introduction-

random-forests/.

[12] L. Wilson, “DJ RANDOM FOREST: SONG RECOMMENDATIONS

THROUGH MACHINE LEARNING,” MSiA Student Research, 09-

Feb-2018. [Online]. Available:

http://sites.northwestern.edu/msia/2018/02/09/dj-random-forest-song-

recommendations-through-machine-learning/.

[13] “Machine Learning Algorithms Pros and Cons,” HackingNote. [Online].

Available: https://www.hackingnote.com/en/machine-

learning/algorithms-pros-and-cons.

[14] “Restaurant Data with Consumer Ratings,” Kaggle UCI, 27-Sep-2017.

[Online]. Available: https://www.kaggle.com/uciml/restaurant-data-

with-consumer-ratings/.

[15] “Learning Curve,” ritchieng.github.io. [Online]. Available:

https://www.ritchieng.com/machinelearning-learning-curve/.

[16] N. Donges, “The Random Forest Algorithm – Towards Data Science,”

Towards Data Science, 22-Feb-2018. [Online]. Available:

https://towardsdatascience.com/the-random-forest-algorithm-

d457d499ffcd.

[17] K. Miyahara and M. J. Pazzani, “Collaborative Filtering with the Simple

Bayesian Classifier,” PRICAI 2000 Topics in Artificial Intelligence

Lecture Notes in Computer Science, pp. 679–689, 2000.

[18] S. Ray, “6 Easy Steps to Learn Naive Bayes Algorithm (with code in

Python),” Analytics Vidhya, 11-Apr-2018. [Online]. Available:

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/.

[19] N. Salerni, “Report: 98% of iPhone Users Have Tried Siri, Most Don't

Use it Regularly,” iPhone in Canada Blog, 06-Jun-2016. [Online].

Available: https://www.iphoneincanada.ca/news/report-98-of-iphone-

users-have-tried-siri-most-dont-use-it-regularly/.

[20] S. Perez, “Siri usage and engagement dropped since last year, as Alexa

and Cortana grew,” TechCrunch, 11-Jul-2017. [Online]. Available:

https://techcrunch.com/2017/07/11/siri-usage-and-engagement-dropped-

since-last-year-as-alexa-and-cortana-grew/.

[21] Zhang, Heng-Ru & Min, Fan & He, Xu. (2014). Aggregated

Recommendation through Random Forests. TheScientificWorldJournal.

2014. 649596. 10.1155/2014/649596.

https://www.engadget.com/2018/02/12/amazon-ai-chip-alexa-report/
https://www.youtube.com/watch?v=uE_WJTnqUwA
https://www.kaggle.com/osbornep/reinforcement-learning-for-meal-planning-in-python/notebook
https://www.kaggle.com/osbornep/reinforcement-learning-for-meal-planning-in-python/notebook
https://www.kdnuggets.com/2016/07/support-vector-machines-simple-explanation.html
https://www.kdnuggets.com/2016/07/support-vector-machines-simple-explanation.html
http://www.dataversity.net/machine-learning-algorithms-introduction-random-forests/
http://www.dataversity.net/machine-learning-algorithms-introduction-random-forests/
http://sites.northwestern.edu/msia/2018/02/09/dj-random-forest-song-recommendations-through-machine-learning/
http://sites.northwestern.edu/msia/2018/02/09/dj-random-forest-song-recommendations-through-machine-learning/
https://www.kaggle.com/uciml/restaurant-data-with-consumer-ratings/
https://www.kaggle.com/uciml/restaurant-data-with-consumer-ratings/
https://www.ritchieng.com/machinelearning-learning-curve/
https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd
https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd
https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/
https://www.iphoneincanada.ca/news/report-98-of-iphone-users-have-tried-siri-most-dont-use-it-regularly/
https://www.iphoneincanada.ca/news/report-98-of-iphone-users-have-tried-siri-most-dont-use-it-regularly/
https://techcrunch.com/2017/07/11/siri-usage-and-engagement-dropped-since-last-year-as-alexa-and-cortana-grew/
https://techcrunch.com/2017/07/11/siri-usage-and-engagement-dropped-since-last-year-as-alexa-and-cortana-grew/

