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Abstract—Siri the first invented Intelligent Personal 

Assistants by Apple. However, the use of Siri is not high. Part of 

it is due to the limitation of its ability to understand users. In this 

research, we are applying three supervised learning classifiers: 

Support Vector Machine (SVM), Random Forest and Naive 

Bayes (NB) to turn Siri into a learning agent so that it could make 

personalized food recommendations. While RF has the best 

performance and NB has the worst after our testing, there were 

various errors in our models and limitations we faced that allows 

future improvements on this project.  

Keywords—Siri, Support Vector Machine, Random Forest, 

Naive Bayes 

I. INTRODUCTION 

Virtual Assistants (VAs) or Intelligent Personal Assistants 

(IPAs) are software agents that help user perform tasks or 

services [1]. Siri was the first modern IPA created and 

implemented on smartphones in 2011 by Apple.  Siri helps 

users to complete some basic tasks like calling someone or 

setting alarms just by talking to it. The invention of Siri took 

other tech companies years to catch up [2]. Amazon’s Alexa 

was released in 2014 and Google Assistant was released in 

2016 [2]. However, the creation of other IPAs has made Siri 

lose the race since the later IPAs have a wider range of 

features [2]. According to the article, Apple has not improved 

significantly. 

Statistically, 98% of iPhone users have tried Siri but 70% 

of them sometimes or rarely use it [19]. Another report also 

claims that the number of Siri users dropped by half, from 

21% to 11%, in 2017 after the growth of Alexa and Google 

Assistant [20]. After doing research, we realized that the AI 

implemented Siri is limited to speech recognition. What Siri 

does is listening to the voice, converting speech to computer 

language, data searching and responding [4]. According to [5], 

the interaction with Siri isn’t actual conversations, “but the 

interactions are normally single-turn inputs which are dealt 

with independently.” There is no back and forth conversation. 

Siri does not a learning agent. We want to fully develop Siri so 

that it can become a learning agent: learning from experience. 

In this project, we want Siri to be able to access the search 

history from the phone browser, or Safari, and see what sort of 

food or entertainment users like in order to make future 

recommendations based on user’s preference especially when 

user travels to another area. Since this is a broad approach, we 

are narrowing it down to focus on food recommendation based 

on user’s interest. 

 The main challenge of this project is that there is no 

Safari browsing dataset and there was not any similar work 

done on Siri. To alleviate this, we used a restaurant data with 

consumer rating, where rating is the iPhone user’s interest 

level based on different restaurant characteristics. 

 As Siri can make personalized recommendations, the 

use of Siri will be improved because users won’t have to go on 

Yelp or TripAdvisor to find restaurants when they travel and 

read the comments on the food/service to see if it’s what they 

are looking for. And since all iPhone users have access to Siri, 

it will be more convenient to use instead of spending extra on 

Alexa or Google Assistant.  

II. BACKGROUND 

 Siri uses Natural Language Processing to translate 

spoken language into text that machines can understand [6]. 

You might ask “Do I need an umbrella today?” and Siri can 

understand that you’re asking for a prediction of rain [6]. Siri 

can do it because of the algorithm. It takes in the questions and 

searches for keywords. 

A. Related Works 

Even though there is not a significant amount of work done 

on improving any other aspect of Siri besides speech 

recognition, there is various work done on predicting human 

behavior.  

SVM method is used in various research to make 

recommendations based on user preferences. [8] uses SVM to 

predict movie rating based on movie content and user 

interests. The model is created based on user’s rating, movie 

information, user’s demographic. The research proved that 

SVM is the best machine learning approach among others 

such as Linear Classifier, Bayesian learning because the 

solution identified with SVM is optimized and has a strong 

generalization ability [9]. One of the advantages of SVM is its 

accuracy [10] but the choice of parameters impacts on its 

prediction accuracy [9]. In addition, SVM doesn’t suit large 

dataset since the training time will be high [10]. 

Random Forest [RF] is also found used in making 

recommendations based on user’s preferences. The study in 

[12] uses RF to make music recommendations based on user’s 

preferences. The program prompts the user with a minimum of 

10 songs and has he/she rate the songs then used the rated data 

for training. Random Forests is a combination of many 

decision trees which increases accuracy from multiple 

suggestions (each suggestion is a tree). RF for said to be better 

in classification problems than SVM with the dismissal of 

having to tune parameters; RF is faster and scalable [13]. 

However, the trade-off for RF is its difficulty on interpretation 

for human [13].   

Naive Bayes (NB) classifier is said to perform well with 

multiclass classification and it’s often used to text 

classification and recommendation system [20]. A study has 



done by Koji Miyahara† and Michael J. Pazzani in UC Irvine 

using NB algorithm for books, CDs, … recommendations 

using NB algorithm [18]. The study uses user preferences as 

features to determine if the book will be liked or disliked. NB 

it’s used for its simplicity. It requires less training which 

results in a faster process. However, the strong assumption of 

feature independence is one of its disadvantages. In addition, 

if a class label has no occurrence, the probability will be zero. 

This problem is mitigated by Laplace smoothing (explained in 

the Method section). 

In this Project, we will develop Siri into a learning agent. 

Based on our understanding, we will program all of the above 

algorithms and compare and contrast the performances with 

three performance metrics.  

B. Paper Organization 

We structure the paper in the following order. Section I 

introduces the problem, its challenges, and benefits of the 

study. Section II addresses different state-of-art methods that 

were done in previous similar work and their advantages as 

well as disadvantages. Section III  we describe in details how 

we will use the algorithms to run the data and the metrics we 

use to evaluate the algorithm. Section VI displays the results 

and analysis of the performance of each method. And finally, 

we will conclude our work on section V. 

III. METHODS 

In this section, we will discuss step by step how our team 

approached this problem. Our goal is to identify the best state-

of-art method to train Siri on predicting user’s interest in 

restaurants based on different restaurant characteristics and 

user’s preferences, and what features would be likely to 

impact user’s interest. To achieve this goal, we divided our 

process into three steps (displayed in Figure 1). 

Our first step is processing data. We merged, cleaned and 

sectioned our data based on their importance ranking. To find 

out the ranks, we ran a built-in function from sklearn. Then we 

structured four variations of our dataset with more important 

or less important features. 

Our second step is training the sets with three supervised 

learning algorithms: Support Vector Machine, Random Forest, 

and Naive Bayes. We applied cross-validation on training 

data. 80% of our data is alternately trained for ten iterations. 

Our final step is evaluating the performance of the three 

methods. We ran 20% of our data on training models for 

testing. Then we compared their f1 scores and their learning 

curves for evaluations.  

 

 
Figure 1. Computational Pipeline of our Methodology. 

First we merged and cleaned our data. Then we sectioned it 

into four variations. We tested and trained our models with 

SVM, RF, and NB models. Finally we evaluated the results 

with f1 score and learning curve. 

A. Datasets 

The dataset we used in this research is the Restaurant Data 

with Consumer Ratings from Kaggle [14]. This data consists 

of nine files : 

Restaurants 

1 chefmozaccepts.csv 

2 chefmozcuisine.csv 

3 chefmozhours4.csv 

4 chefmozparking.csv 

5 geoplaces2.csv 

 

Customers: 

6 usercuisine.csv 

7 userpayment.csv 

8 userprofile.csv 

 

User-Item-Rating: 

9 rating_final.csv 

 

The dataset has over 2300 restaurants and over 130 user 

profiles. We merged the data among files by using foreign 

keys which are restaurant ID and customer ID, hot-coded 

nominal data into binary and cleaned up NaN values. After 

finishing the merging and cleaning data, our final dataset has 

10,000 points. The reason for the expansion from 2000 

restaurants and 130 users is due to the multiple ratings from a 

single user. 

B. Sectioning Data 

Since we have 27 features, we want to section our main 

dataset into 3 sets with more and less important features 

added. To determine the impact of features on our prediction 

model, we will run ExtraTreesClassifier built-in function from 

sklearn library to sort out six least important features and six 

most important features to see how they impact the prediction 

of our models. In this study, we will test in total four 

variations of our dataset:  

Variation 1: dataset without 6 most and 6 least important 

features 



Variation 2: dataset 1 with 6 most important features 

added 

Variation 3: dataset 1 with 6 least important features 

added 

Variation 4: original dataset with full features 

C. Support Vector Machine 

Support Vector Machine (SVM) is a supervised learning 

algorithm and the first algorithm we use to determine user’s 

level of interest on different restaurant features. SVM uses a 

hyperplane to classify data into two classes. The more features 

we have, the more dimensions added to the problem. This 

technique is called “kernelling”, mapping data to a higher 

dimension. 

 

 
Figure 2. Hyperplane in Two-dimensional and Three-

dimensional View. This figure is adapted from [10] 
 

In addition, SVM is inherently a two-class classifier, we 

have three classes. The most common techniques are one-

versus-rest (ovr) classifier and one-versus-one (ovo) classifier. 

In this study, we are using SVC function from scikit learn 

library of Python. This function supports two-class classifiers 

and multiclass classifier and mitigates the problem with 

kernelling. 

There are a few parameters in SVC functions to notice: C, 

gamma and kernel. C is how much we want to penalize 

misclassified data points. Lower C means simple and soft 

margin but underfitting; higher C means less mistake but 

overfitting. Gamma is model complexity. Lower gamma 

means less complexity and higher gamma means more 

complexity (the higher gamma, the more likely the model will 

classify data point). There are three kernel types: Linear, RBF, 

Poly. We used Linear kernel for simplicity, set C = 0.1, 

gamma = auto and ‘ovo’ classier in SVC built-in function in 

sklearn. 

D. Random Forest 

Random Forest (RF) is the second supervised learning 

classifier we use to test the data. RF algorithm builds multiple 

Decision Trees and merges them together for a more accurate 

prediction [17]. RF is an easy method without tuning 

parameters. RF allows you to measure the importance level of 

each feature and drop the least important one since the higher 

number of features will likely lead to overfitting.  

 
Figure 3. Random Forest Scheme. This figure is 

adapted from [21]. 
 
In this process, we use sklearn built-in Random Forest 

function. Some critical parameters of the functions for 

accuracy are n_estimators parameter - the number of trees the 

algorithm will build, max_features - maximum features in one 

tree. As mentioned, the higher the number of trees, the better 

the model performances, however, the slower the computation. 

We set n_estimators to 250 trees and default max_features 

which is the square root of the data features. 

E. Naive Bayes 

Naive Bayes is the final supervised learning classifier that 

we used to run the data with. Naive Bayes classifier is a family 

of probabilistic classifier, based on Bayes theorem. Naive 

Bayes assumes that features are independent from one another.  

 

𝑃(𝑦 | 𝑥1, . . . , 𝑥𝑛)  =  
𝑃(𝑦) 𝑃(𝑥1, . . , 𝑥𝑛  | 𝑦)

𝑃(𝑥1, . . . , 𝑥𝑛)
 

 

with n is the number of features. NB technique uses 

probability to classify data based on the given probability of 

an occurred event. 

 In this study, we used MultinomialNB function from 

sklearn. MultinomialNB is suitable for discrete data (non-

continuous data), which is our data. NB classifier has a feature 

called Laplace smoothing where it increases the zero 

probability to the small positive value to avoid discarding 

features (that is supposed to have zero probability) in our data. 

Therefore, in our MultinomialNB function, we set alpha 

(Laplace smoothing) parameter to be 1.0 

 

F. Evaluation 

To evaluate the performance of the algorithms we apply 

three methods 

a) Cross-Validation for F1 Score 



When it comes to measuring how accurate our model do, 

there are plenty of scoring methods, i.e. Accuracy, Precision, 

Recall, F1. We want to avoid Accuracy due to the large 

contribution of a class on True Positive. Our data does not 

have a balanced number between classes. 

Precision is the probability of true Positive out of the total 

predicted Positive (true and false). 

 
Recall captures the probability of true Positive out of our 

predicted values. 

 
 F1 is used to seek a balance between Precision and 

Recall. Therefore, we decided to use F1 score measurement. 

 

𝐹1 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

 
Instead of regularly splitting the data into 80-20 for 

training and test and running the data once, we use Cross-

validation for the performance measurement. Cross-Validation 

will run the data in X iterations (in this case we chose 10 

iterations) in which each iteration has a different set of training 

and testing data. 

 

 
Figure 4. Cross Validation Scheme. This figure is adapted 

from User:Joan.domenech91 originally released under CC 

BY-SA 3.0 

 

b) Learning Curve 

The learning curve is used to compare the performance of 

training and testing data over various numbers of training 

instances. It gives the data of how well our model can 

generalize to new data [16]. The purpose of the learning curve 

is to minimize bias and variance and find the right number of 

features for a corresponding model. Often, model with more 

data does better. 

 

 
Figure 5. Sample Learning Curve Graphs. Example is taken 

from our results 

 

The learning curve also tells us when the model has 

learned as much as it can about the data. This occurs when:  

1) The performance on training and testing sets stay 

stable 

2) The gap between error rate stays consistent despite 

the increasing number of training instances 

There are three types of learning curves: 

1) High variance: When training and testing errors 

converge and are high (Figure 6) 

2) High bias: When there is a large gap between the 

errors (Figure 6) 

3) Ideal learning curve: Testing and training learning 

curves converge at similar values and a smaller gap 

between errors 

 

 
Figure 6. High Variance Learning Curve (upper figure) 

and High Bias Learning Curve (lower figure) Example. 

This figure is adapted from [15]  



 

IV. RESULTS 

In this section, we showcase three performance metrics: 

feature importance, f1 score and learning curve. We first 

calculated the importance of each feature from sklearn. Then 

we computed f1 score with cross-validation for three 

algorithms. Finally, we plotted the learning curve over 

different number of instances of three methods. 

A. Feature Importance 

We ran ExtraTreesClassifier function in sklearn to check 

the importance of each feature (Top 10 and Bottom 10 features 

are displayed in Table 1 and Table 2). 

From the observed results, we chose the top six most 

important features are: customer’s Color, Personality, Interest, 

Transportation, Budget, and Ambiance; bottom six least 

important features are: customer’s Cuisine, Religion, Activity, 

restaurant’s Hours, Days, and Name. 

The results were surprising to us since we predicted that 

customer’s features like (favorite) Color or Personality would 

not affect their liking for the restaurants, but the results 

showed that those features have the highest correlation. The 

least importance feature is the cuisine type that the customer 

likes - 0.0. What user’s favorite cuisine is does not seem to 

affect their liking on the restaurants. The second least 

importance feature is the restaurant hours. 

 

Table 1. Top 10 Features. The feature importance is 

computed by ExtraTreeClassifier built-in function from 

sklearn. The features are ranked for the partition of the dataset. 

Ranking Feature Importance 

1 Ccolor=purple 0.054304 

2 Cpersonality=hunter-

ostentatious  

0.052972 

3 Cinterest=variety  0.050607 

4 Ctransport=on foot 0.044125 

5 Cbudget=low  0.039327 

6 Cambience=family  0.033144 

7 Cbudget=medium  0.030156 

8 Cdrink_level=casual 

drinker'  

0.029640 

9 Cdress_preference=inform

al  

0.028742 

10 Cpersonality=thrifty- 0.028575 

protector  

 

Table 2. Bottom 10 Features. The feature importance is 

computed by ExtraTreeClassifier built-in function from 

sklearn. The features are ranked for the partition of the dataset. 

Ranking Feature Importance 

276 Ccuisine=Tunisian  0.000000 

275 Ccuisine=Organic-Healthy 0.000000 

274 Ccuisine=Russian-

Ukrainian  

0.000000 

273 Ccuisine=Southwestern 0.000000 

272  Ccuisine=Indonesian 0.000000 

271 Ccuisine=Hungarian 0.000000 

270 Ccuisine=French   0.000000 

269 Ccuisine=Armenian 0.000000 

268 Ccuisine=Dutch-Belgian 0.000000 

267 Ccuisine=Brazilian 0.000000 

 

 

Figure 7. Importance of Features. The feature importance is 

computed by ExtraTreeClassifier built-in function from 

sklearn. The total importance percentages sums up to 1.0. The 

features are ranked for the partition of the dataset. 

 

B. F1 Score 

In this section, we display the results of the mean and 

standard deviation (SD) of f1 score for three models.  



Our data is divided into 80-20, 80% of the data is for 

training and 20% is for testing. We used Cross-validation 

(CV) model to run our data for ten iterations. In each iteration, 

a different 80% of the data is trained and a different 20% is 

tested. F1 score is computed after every iteration and averaged 

out of ten iterations. SD is a measurement of uncertainty. It 

shows how far away data spreads out from the average. the 

higher the SD, the worse the model is doing since our f1 score 

since f1 varies heavily. 

 

Table 3. Mean and Standard Deviation of F1 of SVM, RF, 

NB models. We computed Mean and Standard Deviation of 

our models across different variations of our dataset. Each 

variation contains different set of features based on their 

importance ranking. 

 SVM RF NB 

Variation 1 

(Least features) 
0.549482 
(0.0788) 
 

0.592319 
(0.0945) 
 

0.561224 
(0.1259) 
 

Variation 2 

(More 

important 

features added) 

0.623701 

(0.0913) 
 

0.677312 

(0.0965) 
 

0.656376 

(0.1082) 
 

Variation 3 

(Less important 

features added) 

0.540402 

(0.1119) 
 

0.632346 

(0.1077) 
 

0.562260 

(0.1121) 
 

Variation 4 (Full 

features) 
0.624878 

(0.1112) 
 

0.704369 

(0.0851) 
 

0.675336 

(0.0939) 

 

From Table 3, we can notice that our average f1 scores are 

low across our models (mostly below 0.7) and its SD is overly 

high. 

Among three models, RF model results in the highest f1 

score and SVM results in the lowest f1 score throughout 

different variations of our dataset. 

Our goal was also testing on the effect of different 

features on our model. As the result, adding more important 

features increases by f1 by 10%. However, adding less 

important features does not improve the performance. 

 

 

 



 
Figure 8. Boxplots of F1 Score of SVM, RF, NB Models. 

The uppermost boxplot represents dataset with the fewest 

features. The second boxplot figure has more important 

features added. The third boxplot figure has less important 

figures added. The lowermost boxplot figure represents data 

with full features. 

 

C. Learning Curve 

In this section, we present the learning curves of different 

models with different training instances. Similar to f1 process 

in section B, we also used cross-validation (CV) with 80-20 

data and f1 score to compute the learning curve. The only 

difference is that in this process, the function uses different set 

of training samples. Training data is incremented by 1000. 

Since we split our data 80-20 for training and testing, the 

training instances contain the maximum of 8,000 samples (out 

of 10,000 samples). Our CV score represents the testing f1 

score. 

Some common characteristics of all the resulted learning 

curves:  

1. Adding features that have great importance rank 

significantly increases the performance 

2. Adding features that have low important rank does 

not make a difference but creates higher variance on 

our models. This is shown by a bigger gap between 

training score and cv score curve; the bigger the gap, 

the higher the variance.   

Out of three models, RF yields the highest score and NB has 

the lowest performance. We will go into a detailed analysis of 

each model and explain why having a maximum score is not a 

good result. 

 

1)  Support Vector Machine (SVM) 

A general performance of the learning curves on four 

variations is the decrease of the training score line (red line) as 

the training examples increase. This means that our model 

does not have a great ability to generalize with new data. This 

indicates a high bias (underfitting) in our SVM model. A way 

to increase the performance of the underfitting model is not 

adding more data points but adding more features.  

As we added more features, out f1 score increases by 

10%. However, that does not eliminate high bias out of our 

model. We also noticed that as we added more irrelevant data, 

the training curve and CV curve don’t converge anymore, 

which imply a higher variance in our model. 

 

 

 

 



 
Figure 9. Learning Curves of Support Vector Machine 

Model. We performed CV with f1 score for SVM model with 

incrementing set training examples by 1000. The uppermost 

curves represent dataset with the fewest features. The second 

curves have more important features added. The third curves 

have less important figures added. The lowermost curves 

represent data with full features. 

 

2) Random Forest (RF) 

A general performance of our RF model is the maximum 

of the training score regardless of training examples. 

Maximum score means absolutely no error. However we know 

it is not true in this case. Thus, this represents a high variance 

(overfitting) in our RF model. High variance is caused by 

complexed model. A solution is to reduce the model 

complexity or add more data points. 

It’s evident in this case that adding more features will not 

help the performance. Therefore, it is easy to see there is no 

difference between the f1 score of the first figure (fewest 

features) and f1 score of the last figure (most features). 

We also noticed when we added features that are less 

important in our model, the gap between training score and 

cross-validation score increased. As we mentioned above, the  

bigger the gap, the greater the variance. Adding irrelevant 

features worsened our model. 

 

 

 
 

 
Figure 10. Learning Curves of Random Forest Model. We 

performed CV with f1 score for RF model with incrementing 

set training examples by 1000. The uppermost curves 

represent dataset with the fewest features. The second curves 

have more important features added. The third curves have 

less important figures added. The lowermost curves represent 

data with full features. 

 
3) Naive Bayes (NB) 



In this NB model, our f1 scores are the lowest compared 

to those of SVM and of FR. To mitigate the problem, we 

added more features. Similar to SVM and RF models, f1 score 

increased when we added more important features to the 

model (second figure), but when we added less important 

features (third, fourth figure), the gap between training score 

and CV score expanded. F1 score in the third figure is not as 

high as f1 score of the second figure. 

On the good side, our NB model does not show severe 

underfitting or overfitting problem. The gap between training 

score and CV score is minimal. In the first two figures, the 

majority of the red line and green line are overlapping. This 

show there is no difference between our predicted results and 

the actual results. 

  

 

 

 

 
Figure 11. Learning Curves of Naive Bayes model. We 

performed CV with f1 score for NB model with incrementing 

set training examples by 1000. The uppermost curves 

represent dataset with the fewest features. The second curves 

have more important features added. The third curves have 

less important figures added. The lowermost curves represent 

data with full features. 

V. CONCLUSION 

In this paper, we tested three supervised learning 

algorithms for recommendation system for Siri: Support 

Vector Machine (SVM), Random Forest (RF) and Naive 

Bayes (NB). Although the results showed that RF has the best 

performance with the highest f1 score, the learning curve 

result proved that the model is high variance. NB models 

resulted in the lowest f1 scores throughout the tests. 

In this approach, we were able to compare and contrast 

different machine learning algorithms to see which one 

performs the best for our type of data. In addition, our 

approach let us train not only one specific portion of our data 

but multiple random sections for higher accuracy. We were 

able to identify what features are likely to have a major impact 

on user’s rating. The higher ranked features are all user’s 

personal characteristics and the lower ranked features are 

restaurant’s features. And we also came to the conclusion that 



adding more features does not fix overfitting problem, only 

adding the “right” features do. 

Nevertheless, we believe we could have improved our 

evaluation method by using of accuracy score and AUC (Area 

under the ROC Curve) besides f1 score. We want to manually 

select the values for the parameters our models rather than 

setting them as “auto” like right now, i.e gamma and C 

parameter in SVM model. A limitation we faced was the 

number of data points in our dataset. For future work, we want 

to develop a reinforcement learning algorithm and gather more 

data, especially browsing data, to train Siri. 
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